
Unmanned Aerial Vehicle Autopilot Firmware
Design and Implementation

1st Luca Ciancanelli
Electrical Engineering Department

Colorado School of Mines
Golden, United States

leciancanelli@mines.edu

Abstract—This paper presents the design and partial imple-
mentation of a custom autopilot firmware system for a fixed-
wing unmanned aerial vehicle (UAV). The objective of the project
was to develop a modular firmware architecture capable of au-
tonomous waypoint navigation, with core components including
real-time data acquisition, digital signal filtering, state estimation,
and control system design. Sensor drivers were developed for five
onboard sensors and integrated into a real-time data logging
and processing pipeline. A complementary and IIR filtering
framework was implemented to estimate UAV orientation and
altitude, enabling the construction of virtual flight instruments
for feedback and characterization. A nonlinear three-degree-of-
freedom (3-DoF) longitudinal model of the aircraft was created
in MATLAB/Simulink, linearized around a trimmed flight con-
dition, and used for the synthesis of an altitude controller based
on linear quadratic regulation. While full autonomous navigation
was not achieved during the project period, foundational com-
ponents of the autopilot were validated through simulation and
flight data analysis, establishing a basis for future development
of complete autonomous flight capabilities.

I. INTRODUCTION

The development of autonomous unmanned aerial vehicles
(UAVs) has become increasingly prominent in the last few
decades as the number of use cases for UAVs has grown.
With the growing number of use cases for UAVs, develop-
ment of specialized hardware and software has become more
common to address the specific needs of UAV applications.
This paper documents the process of developing firmware for
a UAV autopilot tailored to fixed-wing UAVs over the course
of the Spring 2025 academic semester. The initial research
objective was to develop an autopilot that could navigate a
small fixed-wing UAV through several waypoints and conduct
a live demonstration of the autopilot. The development of
this autopilot would include developing sensor drivers, digital
signal processing algorithms for state estimation, flight control
logic, and flight data recording.

While the full scope of the autopilot was not achieved within
the duration of the semester due to unanticipated challenges,
foundational elements for an autopilot were successfully de-
veloped. Future development aims to take the work completed
during this research period and complete the development of
an autopilot that can achieve the initial goals set at the start
of this project.

II. HARDWARE OVERVIEW

A. Fixed-Wing UAV

The fixed-wing UAV platform used for gathering flight data
and testing autopilot functions was a custom developed UAV.
The UAV was a single engine, top mounted wing, conventional
tail airframe that was specifically designed for UAV autopilot
development (Fig. 1). The design of the airframe aimed to
provide stable flight characteristics that would be relatively
simple to design control algorithms around.

Fig. 1. Fixed-Wing UAV Platform Used for Development (Final Configura-
tion)

Using this UAV for autopilot development ended up causing
delays due to the experimental nature of the UAV and need
for modifications to address design issues. For future develop-
ment, it would be more ideal to use an existing UAV platform
for the development of an autopilot from scratch to reduce or
eliminate the need to work on aspects of the UAV that were
unrelated to the autopilot.

B. Flight Controller

The flight controller used for the development of the autopi-
lot was the LEC Innovations Limited Flight Control Manager
V1. This flight controller utilizes an STM32F405 microcon-
troller programmed using embedded C for communicating
with sensors, running filtering and control algorithms, and
outputting control signals to the actuators and motor (Fig.
2). This flight controller was designed in a similar style to
a development circuit board for ease of firmware development
and troubleshooting.



Over the course of developing the autopilot, several design
issues were discovered with the flight controller. However, the
flight controller was able to meet all minimum requirements
for running the autopilot firmware and thus was a reasonable
choice for a flight controller platform. Future iterations of
the flight controller will address the issues discovered during
development and will serve as a better platform for future work
on the autopilot.

Fig. 2. LEC Innovations Limited Flight Control Manager

III. DEVELOPMENT OVERVIEW

The development of the UAV autopilot system was struc-
tured as a sequence of seven primary tasks to be completed
over the course of the semester. The first task involved the im-
plementation of firmware drivers to enable communication be-
tween the flight control microcontroller and onboard/external
sensors, including the accelerometer, gyroscope, magnetome-
ter, barometer, and GPS receiver. The second task focused on
the design of signal processing algorithms to transform raw
sensor measurements into filtered signals suitable for use in
feedback control.

The third task consisted of conducting flight tests to acquire
real-world sensor data for validating the filtering algorithms
and enabling preliminary modeling for control systems. In the
fourth task, a state-space model of the UAV’s longitudinal
dynamics was formulated to support control system design.
Subsequent tasks included the implementation of low-level
controllers for attitude, airspeed, and altitude regulation; the
development of autonomous flight modes for level flight
and waypoint navigation; and the final demonstration of au-
tonomous waypoint traversal in flight.

At the conclusion of the project period, the first three
tasks and a portion of the fourth were successfully completed.
These achievements established a functional sensor-processing
pipeline and laid the groundwork for future control and
navigation development.

IV. SENSOR DRIVER DEVELOPMENT

Each sensor driver was developed to manage two pri-
mary functions: device configuration and data acquisition.
Configuration tasks included setting communication interfaces
and initializing the respective sensor’s control registers. Data
aquisition tasks included defining interrupt and timer based
scripts for retrieving sensor data as it was made available.

A. Sensor Configuration

There was a total of five independent sensor ICs that drivers
were developed for: the inertial measurement unit (IMU), the
magnetometer, the barometer, the thermometer, and the GPS
receiver. Each sensor except for the GPS receiver had a set of
configuration registers that controlled important aspects of sen-
sor data parameters such as the measurement range, on-board
filtering, output data rate (ODR), etc. The device configuration
functions in the drivers would configure the communication
lines (I2C, UART, or SPI) used to communicate with each
IC and set values of each configuration register according to
desired parameters for each sensor.

B. Data Acquisition and Interrupt Handling

Sensor data was acquired using either hardware interrupts
or a timer-based polling approach. For the IMU, magnetome-
ter, barometer, and GPS modules, dedicated interrupt lines
were configured to signal data readiness. The thermometer,
lacking an interrupt interface, relied on periodic polling via
a microcontroller timer. Within the associated interrupt ser-
vice routines (ISRs), sensor registers were read, and newly
acquired data was stored in dedicated memory locations on
the microcontroller.

C. Flight Data Recording Framework

Fig. 3. Raw Accelerometer, Gyroscope, and Magnetometer Data (Flight 4)

To facilitate offline filter development and diagnostic anal-
ysis, a custom flight data recording driver was implemented.
This module periodically stored sensor data to a microSD card



using a double-buffering approach. While one buffer was ac-
tively filled with incoming data, the other was asynchronously
written to non-volatile memory via SPI communication. This
design allowed for uninterrupted data logging at high acquisi-
tion rates while preserving data integrity and minimizing write
delays.

Binary flight data files generated during test flights were
parsed using a MATLAB script, enabling structured import
and visualization of raw sensor outputs. These datasets served
as the foundation for the development and validation of
subsequent filtering algorithms (see Fig. 3).

V. SENSOR FILTERING AND ESTIMATION ARCHITECTURE

To facilitate robust state estimation for state space con-
trol algorithms and flight data analysis, a modular filtering
architecture was developed to process raw sensor data from
the onboard IMU, magnetometer, barometer, thermometer, and
GPS. This architecture was first conceptualized through a
block diagram outlining the flow of raw sensor data through
filtering elements to instruments used for autonomous naviga-
tion (See Fig. 4). Filter development was primarily done using
MATLAB for rapid prototyping, visualization, and parameter
tuning. Filters were tested on flight data to validate proper
state estimation.

Fig. 4. Sensor Filtering and Estimation Architecture

A. Attitude and Heading Reference System

The attitude and heading reference system (AHRS) provides
real-time estimates of the UAV’s orientation in the Earth-fixed
frame, represented by pitch, roll, and yaw angles. While the
AHRS was initially designed to use IMU, magnetometer, and
GPS data, current hardware limitations required exclusion of
magnetometer data due to sensor inaccuracy. Thus, the present
implementation fuses only IMU and GPS inputs (See Fig. 5).

Analysis of test flight data revealed significant high-
frequency noise in IMU measurements, primarily from motor
vibration. To suppress this noise while preserving low fre-
quency data, a first-order infinite impulse response (IIR) low-
pass filter was implemented for each axis of the accelerometer
and gyroscope (See Eq. 1) [1]. The filter coefficient α was

empirically selected (α > 0.8) by comparing filtered and un-
filtered signals to attenuate undesired noise while maintaining
responsiveness (See Fig. 6-7).

Fig. 5. Attitude and Heading Reference System Architecture

y[n] = (1− α) · x[n] + α · y[n− 1] (1)

Fig. 6. Accelerometer Prefilter Plot (Flight 3)

Fig. 7. Gyroscope Prefilter Plot (Flight 3)



Filtered IMU data was then passed into a complementary
filter to estimate pitch and roll angles. This approach combines
gyroscope-derived angle integration and accelerometer-based
inclination measurements (See Eq 2-7) [2]. The fusion is
controlled by a weighting factor α, which was tuned to
balance the drift-prone nature of gyroscope integration with
the noisier but drift-free accelerometer data (See Fig. 8).
Lower α values were selected to prioritize the stability of
accelerometer inputs, minimizing drift while accepting some
additional noise. While the complementary filter was selected
for its simplicity and computational efficiency, future iterations
may implement an extended Kalman filter (EKF) for improved
estimation performance under varying flight conditions.

Φ̂acc[n] = arctan

(
yacc[n]

xacc[n]

)
(2)

Θ̂acc[n] = arcsin

(
xacc[n]

g

)
(3)

Φ̇gyr[n] =pgyr[n]

+ tan
(
Θ̂[n− 1]

)
· sin

(
Φ̂[n− 1]

)
· qgyr[n]

+ cos
(
Φ̂[n− 1]

)
· rgyr[n]

(4)

Θ̇gyr[n] = cos
(
Θ̂[n− 1]

)
· qgyr[n]

− sin
(
Φ̂[n− 1]

)
· rgyr[n]

(5)

Φ̂[n] = α · Φ̂acc[n] + (1− α) ·
(
Φ̂[n− 1] + Ts · Φ̇gyr

)
(6)

Θ̂[n] = α · Θ̂acc[n] + (1− α) ·
(
Θ̂[n− 1] + Ts · Θ̇gyr

)
(7)

Fig. 8. Complementary Filter Pitch and Roll Plots (Flight 3)

B. Altitude Estimation Filter

The altitude estimation filter computes the UAV’s altitude
above ground level (AGL) using barometric pressure and
temperature data (See Fig. 9). The algorithm is based on
the hydrostatic equation, which relates altitude changes to
variations in atmospheric pressure, assuming a standard tem-
perature lapse rate in the troposphere (See Eq. 8) [3], [4].
Ground-level pressure and temperature are recorded at system
initialization and used as reference conditions for subsequent
altitude calculations. This method offers high precision and
low latency, making it suitable for real-time altitude feedback
within a state space control system.

Fig. 9. Altitude Estimation Filter Architecture

ĥ[n] =
T [0]

L
·

((
P [n]

P [0]

)−L·R
g

− 1

)
(8)

Although GPS altitude was available, it was excluded from
the primary altitude estimate due to its lower update rate. Ini-
tial flight tests demonstrated that barometric altitude tracking
was sufficiently accurate for autopilot operation, with observed
deviations remaining within acceptable tolerances (See Fig.
10).

Fig. 10. Barometric/Temperature Computed Altitude and GPS Altitude
Comparison (Flight 3)



To estimate vertical speed, a finite-difference derivative of
the altitude signal was computed using a backward difference
method (See Eq. 9) [5]. This discrete derivative was further
smoothed using a first-order IIR filter to suppress high-
frequency noise introduced by atmospheric fluctuations and
sensor quantization (See Eq. 1 and Fig. 11).

dĥ[n] =
ĥ[n]− ĥ[n− 1]

Ts
(9)

Fig. 11. Vertical Speed Filter Plot (Flight 3)

C. Flight Instrument Outputs

The final outputs of the filtering architecture were inte-
grated into a minimal set of virtual flight instruments required
for autonomous UAV navigation and system characterization.
Filtered pitch, roll, and yaw estimates from the AHRS were
mapped to the Attitude Direction Indicator (ADI) and Heading
Indicator (HI). Altitude estimation and vertical speed from the
altitude estimation filter were mapped to the Altimeter and
Vertical Speed Indicator (VSI) respectively.

The instruments outputs combined with the raw GPS data
form the core flight data required for autonomous flight sta-
bilization and performance analysis. The modular structure of
the filtering and instrumentation system ensures compatibility
with standard state space autopilot architectures and supports
future extensions for higher-order control systems.

VI. REAL-WORLD FLIGHT TESTING

To test the robustness of the flight data recorder and
flight data filtering algorithms, real-world flight testing was
conducted, and the captured data was analyzed. Originally
flight testing was planned to be performed as a single task,
but due to the iterative nature of the development of the flight
data recorder and flight data filtering algorithms, flight testing
was performed several times over the course of the semester.
Flight testing was carried out at a designated model airfield
(Arvada Associated Modelers Airpark) (See Fig. 12).

Several flights were successfully recorded by the flight data
controller, giving several data sets to analyze. Running the

flight data filtering algorithms on the test data proved relative
success of the algorithms in terms of noise reduction and
accurate state estimates when compared to flight footage. Due
to the lack of a reference for the actual states of the aircraft
during flight, limited analysis could be performed to determine
the accuracy of the estimates empirically. For pitch, roll, and
yaw, the flight footage was compared to the estimated states
from the AHRS filter to determine relative accuracy (did
the AHRS filter capture pitch up/down, roll left/right, and
yaw left/right movements that could be observed in the flight
footage). Visual observation confirmed that the AHRS filter
was at least roughly tracking orientation. For altitude, the GPS
altitude served as a reference for the barometric/temperature
computed altitude and demonstrated successful altitude track-
ing (See Fig. 10). For more accurate validation of flight data
filtering algorithms, a commercially available flight controller
could be used to provide an accurate reference to determine
filter performance.

Fig. 12. Flight Testing at Arvada Associated Modelers Airpark

One of the main constraints that limited the amount of real-
world testing that could be accomplished over the course of the
semester was weather. Flight testing was delayed several times
due to high wind speeds, snow, and rain. Future development
could be performed during the summer season to reduce
weather related delays.

VII. STATE-SPACE MODELING AND CONTROL

To enable autonomous flight with closed-loop regulation, a
state-space representation of the UAV’s longitudinal dynamics
was developed. This model captures the relationships between
the control inputs (elevator deflection and throttle) and key
flight states, including airspeed, angle of attack, pitch angle,
pitch rate, and altitude. By linearizing the nonlinear aircraft dy-
namics about a trimmed flight condition, a reduced-order linear
time-invariant (LTI) system was obtained. This representation
enabled the systematic design of state-feedback controllers
using classical and modern control techniques, with an initial
focus on altitude stabilization.



A. Three-Degree-of-Freedom Longitudinal Model

Given the inherent complexity of six-degree-of-freedom
aircraft dynamics, a reduced three-degree-of-freedom (3-DoF)
longitudinal model was first constructed to establish a baseline
for control system design. An existing nonlinear model of lon-
gitudinal dynamics was implemented in MATLAB/Simulink
based on simulated UAV airframe characteristics [6]. The
model included six state variables: airspeed, angle of attack,
pitch angle, pitch rate, absolute altitude, and horizontal dis-
tance. As horizontal distance was not essential for vertical
guidance, it was excluded from the control-relevant state
vector.

The simulation environment was developed using a MAT-
LAB function block that computes the time derivatives of
the aircraft states based on current state values and control
inputs. The equations of motion were parameterized using
aerodynamic coefficients obtained from Open Vehicle Sketch
Pad (OpenVSP) simulations over a range of flight conditions
and control surface deflections. Physical airframe parameters
such as mass and moments of inertia were extracted from a
CAD-based model developed in Autodesk Fusion 360. The
resulting nonlinear system was numerically integrated using
Simulink integrator blocks to simulate state evolution over
time (See Fig. 13).

Fig. 13. Non-linear 3-DoF Simulink Model

To determine an appropriate trim condition for linearization,
a steady-state flight solution was obtained using a constrained
optimization procedure. MATLAB’s fminsearch function
was employed to minimize deviations from force and mo-
ment equilibrium, yielding steady-state values for both state
variables and control inputs. These values were verified via
time-domain simulation (See Fig. 14). Linearization about the
trimmed operating point was performed using the MATLAB
Model Linearizer tool, resulting in state-space matrices A, B,
C, and D for use in controller design.

Fig. 14. Steady State Flight Simulation of Non-linear Model

B. Altitude Control System
An altitude control system was implemented in Simulink

using the linearized 3-DoF model as the basis for controller
synthesis (See Fig. 15).

Fig. 15. 3-DoF Altitude Controller Architecture

The estimated states are fed into a compensator designed via
linear quadratic regulation (LQR), which computes the optimal
control inputs to minimize a weighted cost function of tracking
error and control effort [7]. Reference scaling was applied to
ensure correct steady-state tracking behavior under the linear
model assumptions [8] (See Fig. 16).

Fig. 16. 3-DoF Altitude Controller Compensator

The resulting controller successfully demonstrated regula-
tion of altitude and convergence to reference commands within
the nonlinear simulation environment, validating the efficacy
of the linear control design (See Fig. 17-18).



Fig. 17. Altitude Controller Simulation States (Climb 100ft)

Fig. 18. Altitude Controller Simulation Control Inputs (Climb 100ft)

VIII. CONCLUSION

This paper presented the design and implementation of
a custom autopilot firmware architecture for a fixed-wing
unmanned aerial vehicle. The development process involved
sensor interface design, real-time data acquisition, digital
signal processing for state estimation, flight data logging,
and preliminary state-space control system design. Emphasis
was placed on building a modular and extensible framework
suitable for fixed-wing UAV navigation and control.

Although the complete implementation of waypoint navi-
gation and autonomous flight modes was not achieved within
the project timeline, key foundational components—including
sensor drivers, filtering algorithms, and a state-space-based
altitude control system—were successfully developed and val-
idated through real-world flight testing and simulation. The
filtering architecture demonstrated the ability to extract usable
state estimates from noisy flight data, and the preliminary
controller showed effective altitude tracking within a nonlinear
simulation environment.

These results establish a functional platform for contin-
ued development of autonomous flight capabilities. Future
work will focus on expanding the state estimation framework

to include more advanced filtering methods, completing the
implementation of full flight control modes, and executing
autonomous waypoint navigation. Improvements to both hard-
ware reliability and sensor accuracy will further support the
transition from simulation to in-flight control demonstrations.

REFERENCES

[1] P. Salmony, ”IIR Filters - Theory and Implementation
(STM32) - Phil’s Lab #32,” YouTube, Sep. 07, 2021.
https://www.youtube.com/watch?v=QRMe02kzVkA [accessed Mar.
03, 2025].

[2] P. Salmony, “Complementary Filter - Sensor Fusion
#2 - Phil’s Lab #34,” YouTube, Sep. 30, 2021.
https://www.youtube.com/watch?v=BUW2OdAtzBw [accessed Mar. 03,
2025].

[3] “ICAO standard atmosphere,” Oxford Reference, 2025.
https://www.oxfordreference.com/display/10.1093/oi/authority.20110803095955775
[accessed Mar. 03, 2025].

[4] “A Quick Derivation relating altitude to air pressure.”
Portland State Aerospace Society, Dec. 12, 2004.
https://archive.psas.pdx.edu/RocketScience/PressureAltitude Derived.pdf
[accessed Mar. 03, 2025].

[5] P. N. Shah, “Newton’s Backward Difference formula (Numerical
Interpolation) Formula & Example-1,” Atozmath.com, 2025.
https://atozmath.com/example/CONM/NumeInterPola.aspx?q=B&q1=E1
[accessed Mar. 03, 2025].

[6] B. L. Stevens, E. N. Johnson, and F. L. Lewis, Aircraft control
and simulation, 3rd ed. : dynamics, controls design, and autonomous
systems. Malden, MA: Wiley-Blackwell, 2015.

[7] K. Johnson. ”EENG417: Modern Control Design: Optimal Control,”
Colorado School of Mines, 2024.

[8] K. Johnson. ”EENG417: Modern Control Design: Systems with Non-
zero Reference Signals,” Colorado School of Mines, 2024.


